The source code for this article is available on Data Based

G Advisor's Forum on CompuServe (GO DBA). Call (800]
/ HANDS'ON FOXPRO ; 848-8199, wmuh%ntoryowlmlmmducmfy)
Membership.

Flex Reports, Part 2

These tricks show how to get FoxPro user-defined functions to snake information
across columns in your reports... B By Lisa C. Slater

ast time, we discussed variable-width reports using

the IIF() function and arrays to handle situations in

which you don’t know how many columns your report

will contain. In your next Report Writer challenge, the
FRX file will know how many columns it has—now all we have
to do is gather information from different detail records in the
SELECTed database to fill them.

Why multiple records per line?

Suppose you have a list of account codes and their descrip-
tions as a reference list. Together, these two fields might be
only 30 columns wide. Nobody likes a reference sheet that
runs for 10 mostly-blank pages.

Or perhaps you want to show all individual sales for the day,
with a total at the end, in a point-of-sale system. You could
do it with “paper-tape” printers, with paper only a few inches

Figure 3—Snaking columns grouped

wide; otherwise you’ll end up with mostly blank pages again. Listing 1—The code to snake records across the page
Maybe you just want a list of names and addresses for your
customers, and you’d like them more than one across on a KRR AR AR AR AR A AR AR AR R AR AR AR AR R I AR AR AR R AR AR AR R R AN

page, to conserve paper. You could use the Label Generator, Program: SNAKEIT.PRG :: a procedure file
Purpose: Multiple records per line in reports

but then you’d have to hard code your page numbers and other u
Author: Lisa C. Slater

*
*
headers and footers. ::
In each of these cases, the best solution is to put multiple *:  Fncts: DO_SKIP():: chain items across page
detail records on each line. The key to doing it with the Report * : SNAKE2() :: snake items down by page

*

*

*

Writer is a few user-defined functions (UDFs). : SNAKE3() :: snake items by group by page
: D_LINES():: figure detail lines per page

:tt'tit**ﬁtt;tﬁﬁ'ttttt**tittitt'tit'**t'ﬂt*'ttt*'ﬁi

Snaked and multiple columns

I use three different approaches to solve three different R L T e T T T T T T L ]
layout problems, shown in Figs. 1 to 3. In the first layout, *: DO_SKIP() :: chain items across
records are consecutive across the page; in the second’ all *:Q‘Qt’*ti*ti*ti*tﬁ't*i*ttttii*'ttt.ﬁﬁﬁ*.t"ti*ti*t'
records in the report “snake” down the page and then up to .
the next column; and in the third, records “snake” a single Before calling the report:

. Sy ** Name your group expression:
group at a time. Listing 1 shows you the UDFs that make * whichgroup = "test-group"
these layouts pOSSIble. ** If you're not grouping, assign a dummy variable
** that will never change value during report run:

Figure 1—Multiple records on a line * iy e o Ny

* whichgroup = "mdummy"

FUNCTION do_skip
mreturn = .T.
oldvalue = &whichgroup
SKIP
* if we’'ve changed group, need to let Report Writer
* do its own break
* need check for EOF() just in case we’re not '
Figure 2—Snaking columns with no groups * grouping so first condition will never be true
IF &whichgroup <> oldvalue .OR. EOF()
SKIP -1
mreturn = .F.
ENDIF
RETURN mreturn

A AR AR R AR AR AR AR AR R AR AR AR AR AR RN AR AR AR R AR AR AR AR

*: SNAKE2() :: snake all items down
R R AR A AR AR AR A AR RA R AR A RN RARRRARARARAA AR ARRARRR

** Baefore calling report:

* no_rows = d_lines("test2.frx")

** see D_LINES() for additional comments

* rowcount = 1 && must be 1

* whatprint = "test->group+test->thing" && print
&& expr

Continued ]

92 DATA BASFD ANVISOR/APRII 1001



FUNCTION snake2
PARAMETERS no_col, no_cols
mreturn = ""
IF ! EOF()
whichrec = RECNO()
SKIP no_rov-* (no_col—l)
IF ! EOF()
mreturn = &whatprint
ENDIF
IF no_cols = no_col
rowcount = rowcount + 1
ENDIF
IF rowcount
rowcount
ENDIF
IF ! (rowcount = 1 .AND. no_cols = no_col)
GO whichrec
ENDIF
ENDIF
RETURN mreturn

no_rows + 1
1

t:itfﬁ*.t*i*tltttﬁﬁ*t*i*lﬁ'.i**ﬁi*ﬂ'*ii**'ﬁﬂ*iit*ﬁ*tﬁt.

%. SNAKE3() :: snake items by group
ﬁ:titti*it'ittﬁI*t**ittt*tﬁtﬁtQtttittttittf*t*tttii*ﬁtt

**x Report form *must* start new page on group expr
** Before calling report:
* no rows = d 1ines(“reportnamc.£tx")

** gee D_LINES-(') for additional comments

* rowcount = 1 && must be 1

* whatprint =/

* "teat—>thing+tost—>g:oup" && print expr
* whichgroup = ntest->group” && group expr

FUNCTION snake3
PARAMETERS no__col, no_cols
mreturn = ""

IF ! EOF()

MIGHTY MAIL
PROFESSIONAL

Rovalty tree developer’s edition for FoxPRO and FoxBASH

demos or brochures,
(303) 752-2086

a4 NATA BASED ADVISOR/APRIL 1991

HANDS-ON FOXPRO®

whichrec = RECNO()
thisgroup = &whichgroup
SKIP no_:ovt' (no_col-l)
IF &whichgroup = thisgroup .AND. ! EOF()
mreturn = &whatprint
IF no_cols = no_col && end of the line
rowcount = rowcount + 1
IF rowcount = NO_Irows +1
rowcount = 1
ENDIF
ENDIF

IF no_cols = no_col && end of the line
rowcount = rowcount + 1
IF rowcount = NO_IOws +1
rowcount = 1
IF &whichgroup <> thisgroup .
* need to let Report Writer do skip
* as a break on the group
DO WHILE &whichgroup <> thisgroup
SKIP -1
ENDDO
ENDIF
ENDIF
ENDIF
ENDIF
IF ! (rowcount = 1 .AND. no_cols = no_col)
GO whichrec
* otherwise let Report Writer do skip
ENDIF
ENDIF
RETURN mreturn

t:t"ﬁ*‘tﬂtii'*"ii*‘ﬁ’ﬁtﬁ*ﬁ'tt'ikﬁi**ﬁﬁ‘*'iﬁﬁ‘ii**ﬁt"

*: D LINES() :: figure detail lines per page

*:iﬁt:*ﬁ*iii*'***it*ﬂ*iﬂ'ﬁi'titﬁ'iﬁ'*'ﬁﬁﬁit*ltﬁ*t'*k*iﬁ

* Doesn’t work with blank header or footer lines!

Data Junction
converts data files!

Any ASCII o dBASE e R:BASE ¢ Lotus 1-2-3
Excel » Paradox ¢ Informix ¢ Q&A e Oracle * Clarion
DataFlex e askSam ¢ SC4 ¢ Xdb  DataEase » Symphony
ACT! e Platinum ® DAC ¢ ACCPAC+ and other apps
Btrieve ® c-tree © EBCDIC ¢ Packed & Zoned decimal
IBM/Mips/Sparc/Cray/V ax/Intel/68000 Binaries & Floats

Filter Your Files While Converting!
= Menu driven — No programming

s Select & rearrange records/fields/chars
= Instant scripting for batch converts

= Written in C — Ideal for OEM apps

1990

DATA BASED |
ADVISOR

The Dutatese Management

Clean Up & Massage Your Data! »
= Merge & split fields; Name/address parsing

= Search/replace and case translation by column ;
= Edit/enter corrections — Build custom data types

»_..an invaluable integration tool."
»_ .. more than worth its price."
.. asurefire winner."

Converts dBASE, ASCII, 1-2-3, Q8A,
& merge files for WordPerfect, Word &
Professional $199— Standard formats plus Binary Z
R:BASE, Clarion, Excel,
Advanced sm—sumam.m+mmu.

Call 800/444-1945 or 512/482-0824 « FAX 5124820976
Also available for LANs, Xenix & Unix. MC/VISA ¢ AMEX ¢ COD ¢ Corp.*
Took&Technlqulu-li”WlZ-MTxm




only Total that information. Instead of using the built-in
Totaling options, however, you can easily write a UDF to
return the appropriate result from all records in the group, or
build the calculation directly into the UDFs that do the
SKIPs.

Stretching the band

I often use a string variable to indicate what should actually
print, although you can have the UDFs RETURN“T.”or “F.”
and have the report form contain the print expressions, as
above. But leaving the print expression outside the report
makes it easier to use these reports for many different pur-
poses, with some minor editing. I merely need to determine
the expression width for a new print expression and delete or
add a few columns accordingly.

What you print in each expression can be more than one line
with this technique. Create a variable like this:

whatprint = [addr-nam.+";"+addx-phono+";"+addr-custid]

Using @; as the expression format tells the Report Writer to
move to the next line when it finds the semi-colon in quotation
marks. Make your expression length the maximum of the
longest line in your multi-line expression, and use the option
to have each expression “stretch vertically.”

Skipping down instead of across

The next two layouts (snaked columns) are a little more
complicated. In addition to group and print expressions, you
need to initialize a row counter to 1 before calling your report.
After checking for a current EOF(), each UDF contains the
expression:

SKIP no_rows'(no_col—l)

to move from the left-most record on a line to the one that
should print at the current page position. Then it does a
variety of checks to see whether there’s a record that should
be printed there. It checks for the end of a line and the end of
a page and changes the row counter accordingly. Then it
moves the record pointer again, back to where it was on the
left-most record, unless it’s reached the end of a page. Ifit has,
the Report Writer will do a SKIP for the first record on the
next page.

Since we use the whatprint variable to return the actual
print expression, the report expressions are relatively simple.
As shown in Fig. 4, each expression takes the form of the UDF
with two parameters; the first parameter indicates the rela-
tive position of this column, the second indicates the total
number of columns in the layout.

Stretching the edge of the envelope

Both snaking layouts use the UDF called D_lines(). As
indicated in the comments, D_lines() figures out how many
detail lines will be available on each report page, using
FoxPro’s low-level file functions to examine each line of an
FRX file. It checks the first two positions of each line to see
what object type the line describes. An object type of 1 indi-
cates the report “header,” with margins and page length
noted. An object type of 18 indicates band information that,
for D_lines()’s purposes, can be ignored. All other objects must
be checked for their height, and the number of detail lines
available adjusted.

These techniques have a few other limitations. SNAKE3()
requires a page break on your group to calculate properly, and
D_lines() doesn’t account for any blank header or footer lines

96 DATA BASED ADVISOR/APRIL 1991

HANDS-ON FOXPRO®

Figure 4— The report expression UDF requires two parameters:
one for the column position, one for the number of columns.

Jysten '.14- adit ""',.'.l_' Record

Report Expression:
< Expr... > snake3(4,8)
< Format... > @: Width: 3

[ ] Style... [X] Stretch Vertically
[ ) Totaling... [ 1 Suppress Reprated Values
[ ) Float as Band Stretches

your report may contain, or headers or footers that stretch
vertically.

If you use the trick with semi-colons to have multiple lines
in each expression, you'll need to get the number of detail lines
as follows:

no_rows = D_linea("testz.frx")/;
(OCCURS ("; ", whatprint)+1)

Use the MOD() function on the result of this expression to
make sure it comes out even,; if not, you can write a procedure
using the functions FCHSIZE() and FPUTS() to add a few
page footer lines to the FRX until it does.

You can use the same trick even if your details are one line
each, to allow more than one snaked “block” on a page. Again,
you must make sure that you aren’t left witha fractional value
for no_rows.

Conclusions: What makes this easier?

We've used macro expressions, arrays, UDFs, the IIF() func-
tion, and @; formatting; we’ve moved the record pointer and
used FoxPro’s low-level file functions. I've yet to find a situa-
tion where I couldn’t figure out a way to use these techniques,
along with Report Writer’s tools, to solve a reporting problem.
What'’s the advantage to this over hard-coding, considering
that by writing UDFs and complex report expressions we are
hard-coding some of the report?

We can concentrate on report design; we can remain focused
on how we want to present the information—and what we
want it to communicate. I leave the mundane, yet painful
details—page numbers, grouping, most box drawing, an
(most importantly) page coordinates for each object—to th
Report Writer where they belong. i

Some parts of creating complex reports are immediatel
rewarding and intrinsically interesting, others must be don
routinely and have no particular charm. One of our challenge
is to determine which part is which, maximize our time wi
the former, and perform the latter with dispatch.

To me, it’s worth the money to find a gardener who trims a
my trees correctly, with power tools, in half an hour so I ¢
spend more time experimenting with exotic species of basi
It's also worth my time to learn to use the FoxPro Repo
Writer, the professional “page-trimmer,” that’s always av. i
able. It can leave me free to enjoy—not abandon—cultivati
of my application gardens.

Lisa C. Slater is a writer and computer consultant raisi
unusual children, herbs, and FoxPro code. You can rea
her on CompuServe (72077,2417). 0



